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A Examples of problem classes that fall under our formulation

Next, to illustrate the framework introduced in Section 2, we provide a few prototypical classes of problems

that fall under it and relate these more precisely to some existing papers discussed in Section 1.2.

A first special case is one in which the decision-maker faces a sequence of optimization problems of the

form minx∈Xt x
′c⋆. This formulation was studied in Bärmann et al. (2017). A natural extension of this

problem, also studied in Bärmann et al. (2017), is to consider linear context functions ft. In this case, the

sequence of optimization problems becomes solving minx∈Xt x
′Ztc

⋆ for the context function ft(x) = x′Zt.

As a concrete application of the above, consider a problem where the goal is to learn preferences from

observing consumers’ behavior. At each time t, the consumer faces an arbitrary bundle St of Jt products,

each with features zjt ∈ Rd and price pjt . The consumer chooses products in the assortment in order to

maximize his/her utility function subject to a budget constraint of bt. Let Zt ∈ RJt × Rd be the matrix

where each row j is given by the vector of features of the product j, i.e., zjt . Let also pt = (p1t , ..., p
Jt
t ) be

the vector of prices of products j = 1, ..., Jt available at time t. At each time, the consumer solves

x⋆t = argmin
x∈Xt

ft(x)
′c⋆, where Xt = {x ∈ {0, 1}Jt : x′pt ≤ bt}, ft(x) = −x′Zt,

which is a sequence of adversarial knapsack problems where the universe of products, the budget con-

straint and the prices are allowed to change and are arbitrarily selected (by nature). This relates to the

formulation explored in the learning from revealed preferences literature.

When there is no budget and |St| = 1, the problem becomes one of sequential customer buy/no buy

decisions. The question then is how to leverage such binary feedback. The consumer is rational and buys

the product if and only if the utility of buying it, modeled as (z′tθ) satisfies z
′
tθ ≥ pt. Here the vector θ

is unknown. The consumer contextual optimization problem is given by x⋆ = argmaxx∈{0,1}(z
′
tθ − pt)x.

In our notation, this would correspond to context function ft(x) = −x(zt, pt), feasible sets X = {0, 1}
and cost vector c⋆ = (θ,−1). Even though the structure of the feedback and the contextual optimization

problem faced by the consumer would be the same as in the contextual pricing literature (see, e.g., Cohen

et al. (2020)), the problem described above is of different nature since the decision-maker is not allowed

to select the price of the product and can’t affect the feedback directly. Here, the decision-maker’s action
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is a passive one, where instead of setting the price, the decision-maker merely “guesses” if the product

would be bought or not by the consumer. This endows the decision-maker with significantly less control

on the information collected.

The flexibility of our contextual optimization formulation allows to encompass works in imitation

learning problems. In Ward et al. (2019), the authors consider an online problem where the goal is to

be able to mimic the optimal scheduling policy of an expert for the following dynamic problem. At each

time t, the length (states) of n queues zt ∈ Rn is observed and the expert solves x⋆t = argmaxx∈X x
′Bzt,

where X is the set of admissible schedule configurations that is assumed to be bounded. The matrix

B is unknown to the decision-maker. This problem falls under our formulation by defining ft to be the

Kronecker product between x and zt, ft(x) = x ⊗ zt = (x[1]zt, x[2]zt, · · · , x[n]zt), and letting vec(B) be

the operator that stacks the columns of B. We then have that at each time t the expert solves

x⋆t = argmin
x∈X

ft(x)
′c⋆, where ft(x) = x⊗ zt, and c⋆ = −vec(B).

Next, we illustrate that the framework also captures versions of problems in inverse reinforcement

learning. A version of the problem studied in Ratliff et al. (2006) can be described as follows. At each

period t, the decision-maker faces a new Markov decision process (MDP) and the objective is to match

the state-action frequency of the expert. The initial state distribution and the transition probabilities for

the period t MDP are known. We let the set of feasible actions for the decision-maker Xt to be the set of

feasible state-action pair frequencies for the MDP. At the end of the period (after a full run of the period

t MDP), the decision-maker observes the optimal state-action pair frequency for that period’s MDP. At

period t, let St and At denote the spaces for state and action, respectively. For each state-action pair

(s, a) ∈ St × At, we have an associated d-dimensional vector of features ϕt(s, a). We assume that the

cost function r(s, a) associated with taking action a in state s is a linear with respect to the vector of

features, i.e., r(s, a) = ϕt(s, a)
′c⋆. We also denote r ∈ R|St|×At to be the cost vector for each state-action

pair. Let Φt ∈ R|St|×At × Rd be the matrix where each row is the feature vector associated with each

of the state-action pairs. Using the dual of the LP formulation for the MDP (cf. Sutton and McCallum

(2006)), we have that Vπ = x′πr = x′πΦtc
⋆, where xπ is the vector of state-action pair frequency implied

by policy π. Therefore, at each time t we would like to solve

x⋆t = argmin
x∈Xt

ft(x)
′c⋆, where ft(x) = x′Φt.

Finally, recall that a structured prediction problem is one where we observe some input and we would

like to predict a multidimensional output. Let the inputs be denoted by z ∈ Z, the outputs by x ∈ X (z)
and the score function by g(z, x). Our problem formulation includes special cases of this class of problems

with a regret objective; when it is possible to assume a parametric form for g(x, z) = −f(x, z)′c⋆ for a
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known f(x, z), then the forward problem is given by x⋆ = argminx∈X (z) f(x, z)
′c⋆ for an unknown c⋆.

Applications of structured predictions include, e.g., natural language processing and image recognition

(Taskar et al., 2005).

The examples above illustrate the generality of the formulation that we study, but also that there

is a potential to lift up some existing formulations within a general framework of contextual inverse

optimization with regret objective.

B Appendix: Proofs

Proof of Lemma 1. We first consider the cases where θ(c⋆, cπ) ≥ π/2. In this case, nature can choose f

as the identity function and a set X = {x1, x2} such that x2−x1 = c⋆. Note that (x2−x1)′c⋆ = ∥c⋆∥2 = 1 ≥
0, and therefore x′2c

⋆ ≥ x′1c⋆, implying that x1 ∈ ψ(c⋆,X , f). We also have that (x2− x1)′cπ = c⋆′cπ ≤ 0,

where the inequality follows from θ(c⋆, cπ) ≥ π/2. Thus, x′1c
π ≥ x′2c

π, implying that x2 ∈ ψ(cπ,X , f).
Therefore, L(cπ, c⋆) ≥ (x2 − x1)′c⋆ = ∥c⋆∥2 = 1.

We now turn our attention to the case where 0 ≤ θ(c⋆, cπ) < π/2. The proof is organized as follows.

We first introduce a relaxation of the maximization problem in the definition of L (see Eq. (8)). Second,

we show that the relaxation leads to a semi-definite programming (SDP) formulation based on the real-

izability of Gram matrices. Third, we derive an upper bound for the relaxed problem. The final step is

to construct an instance that attains this upper bound.

Step 1. Recall from Eq. (8) that L(cπ, c⋆) = supX∈B, f∈F ,xπ∈ψ(cπ ,X ,f)

(
f(xπ) − f(x⋆)

)′
c⋆. For any

X ∈ B, f ∈ F , c⋆, cπ ∈ Sd, x⋆ ∈ ψ(c⋆,X , f), and xπ ∈ ψ(cπ,X , f), we have, by the optimality of x⋆ and

xπ (for their respective problems), that (f(xπ)− f(x⋆))′c⋆ ≥ 0 and (f(xπ)− f(x⋆))′cπ ≤ 0.

In particular, we have the following

L(cπ, c⋆) = sup
{
(f(xπ)− f(x⋆))′c⋆ : X ∈ B, f ∈ F , xπ ∈ ψ(cπ,X , f), x⋆ ∈ ψ(c⋆,X , f)

}
≤ sup

{
δ′c⋆ : δ ∈ Rd, ∥δ∥ ≤ 1, δ′cπ ≤ 0

}
= sup

{
δ′c⋆ : δ ∈ Rd, ∥δ∥ = 1, δ′cπ ≤ 0

}
,

where the inequality follows from noting that for any feasible x⋆, xπ, if one sets δ = f(x⋆) − f(xπ), we
must have that ∥δ∥ ≤ ∥x⋆ − xπ∥ ≤ 1, and δ′cπ ≤ 0. The last equality follows from the fact that an

optimal solution will always have a vector δ with maximal norm. Note that the set of δ ∈ Rd such that

∥δ∥ = 1 is the set Sd. We therefore switch our attention to the optimization problem

sup
{
δ′c⋆ : δ ∈ Sd, δ′cπ ≤ 0

}
, (B-1)

which is an upper bound on the value of L(cπ, c⋆).
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Step 2. We now analyze problem (B-1). In particular, we show how it can be written as an SDP

and solved explicitly. For any c⋆, cπ and δ ∈ Sd, let us define the following matrices

A =
[
δ c⋆ cπ

]
, and B = A′A.

Then, B is equal to

B =


1 δ′c⋆ δ′cπ

δ′c⋆ 1 c′cπ

δ′cπ c⋆′cπ 1

 .
Note that B is the Gram matrix associated with the matrix A. Therefore, it must belong to the set of

symmetric positive semi-definite matrices (see Chapter 8.3.1 of Boyd and Vandenberghe (2004)). More-

over, Cauchy-Schwartz implies that all its entries are in [−1, 1]. We also have that for any feasible solution

of Problem (B-1), the entry B1,3 = δ′cπ ≤ 0 and thus B1,3 ∈ [−1, 0].
Let S3+ denote the set of symmetric positive semi-definite matrices in R3×3 and letM3 denote the set

of symmetric matrices in R3×3. In turn, we have the following relaxation:

sup
{
δ′c⋆ : δ ∈ Sd, δ′cπ ≤ 0

}
≤ sup

{
B1,2 : B ∈ S3+, B1,2 ∈ [−1, 1], B1,3 ∈ [−1, 0], B2,3 = c⋆′cπ

}
≤ sup{B1,2 : B ∈M3, det(B) ≥ 0, B1,2 ∈ [−1, 1],

B1,3 ∈ [−1, 0], B2,3 = c⋆′cπ}

= sup{B1,2 : B ∈M3, 1 + 2B1,2B1,3B2,3 −B2
1,2 −B2

1,3 −B2
2,3 ≥ 0,

B1,2 ∈ [−1, 1], B1,3 ∈ [−1, 0], B2,3 = c⋆′cπ}

= sup{r : 1 + 2ρzr − z2 − ρ2 − r2 ≥ 0,

−1 ≤ ρ ≤ 0, −1 ≤ r ≤ 1, z = c⋆′cπ}, (B-2)

where the last inequality follows from the relaxation to symmetric matrices with non-negative determi-

nants. To simplify notation, we denoted r = δ′c⋆, ρ = δ′cπ and z = c⋆′cπ.

Step 3. In the final step we upper bound the problem in Eq. (B-2). Let h(r) = 1+2ρzr−z2−ρ2−r2

and note that h is a quadratic function for any ρ, z. Also, h is concave and admits two roots

r+ = zρ+
√
z2ρ2 + (1− z2 − ρ2),

r− = zρ−
√
z2ρ2 + (1− z2 − ρ2),

such that h(r) ≥ 0 if and only if r ∈ [r−, r+]. Hence, for any feasible ρ, z, the maximal achievable value of

r is r+. Solving the problem in Eq. (B-2) reduces to finding the feasible values of ρ and z that maximize
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r+. When θ(c⋆, cπt ) = 0, z = 1, and r+ = 0, so there is no regret. Now we consider the case where

0 < θ(c⋆, cπt ) < π/2. Note that r+ is differentiable with respect to ρ and its derivative is given by

∂r+
∂ρ

= z + 2ρ(z2 − 1)
1

2
√
z2ρ2 + (1− z2 − ρ2)

.

Since 0 < θ(c⋆, cπ) implies z < 1, the term inside the square root is always greater than zero and the

derivative is always well-defined on the feasible set. Moreover, since θ(c⋆, cπ) < π/2 implies z > 0 and

ρ ≤ 0 implies ρ(z2 − 1) ≥ 0, we get that the derivative is non-negative on the feasible set. Hence,

independently of the value of z, the value of r+ is maximized on the feasible set when ρ achieves its

maximum value, 0.

Note that for all ρ ≤ 0, we have r+ ≤
√
1− z2, with equality when ρ = 0. Recall that z = c⋆′cπ.

Using the identity sin2 x + cos2 x = 1, we obtain r+ ≤
√

1− (c⋆′cπ)2 = sin θ(c⋆, cπ). To summarize, we

have established that L(cπ, c⋆) ≤ sin θ(c⋆, cπ).

Step 4. We now construct an instance to show that, for any c⋆ and cπ with θ(c⋆, cπ) < π/2, one

may construct an instance X and f such that the regret is given by sin θ(c⋆, cπ). Let Πcπ(c
⋆) denote

the orthogonal projection of c⋆ onto cπ. Since θ(c⋆, cπ) < π/2 and both have unity norm, we have that

Πcπ(c
⋆) = cos θ(c⋆, cπ) · cπ. We now define r = c⋆ − Πcπ(c

⋆). Note that r defines the residual of the

projection of c⋆ onto cπ. Therefore, it is orthogonal to cπ and ∥r∥ = sin θ(c⋆, cπ). Then, by summing the

angles within the triangle, we have that θ(c⋆, cπ) + θ(r, c⋆) + π/2 = π, and thus θ(r, c⋆) = π/2− θ(c⋆, cπ).
Now we set δ = r/∥r∥ and let nature pick f(x) = x and X = {x1, x2} such that x2 − x1 = δ. By

construction, δ is parallel to r and must be orthogonal to cπ. Then, δ′cπ = (x2−x1)′cπ = 0, which implies

that x1, x2 ∈ ψ(cπ,X , f). Moreover,

δ′c⋆ =
r′c⋆

∥r∥
=
∥r∥∥c⋆∥ cos θ(r, c⋆)

∥r∥
= cos θ(r, c⋆) = cos(π/2− θ(c⋆, cπ)) = sin θ(c⋆, cπ),

completing the proof.

Proof of Lemma 2. If C = {0}, then, for any ĉ ∈ Sd, supc∈C θ(c, ĉ) = 0 and any ĉ ∈ Sd is a minimizer.

Next we consider the nontrivial case where C \ {0} is nonempty.

Define the set C̃ = {c̃ ∈ Rd : c̃ = c
∥c∥ for some c ∈ C \ {0}} to be a set of normalized vectors from

C \ {0}. Then, the uncertainty angle of C satisfies:

inf
ĉ∈Sd

sup
c∈C

θ(c, ĉ) = inf
ĉ∈Sd

sup
c∈C\{0}

θ(c, ĉ) = inf
ĉ∈Sd

sup
c∈C\{0}

arccos
c′ĉ

∥c∥
= inf

ĉ∈Sd
sup
c∈C̃

arccos c′ĉ,

where the first equality follows from the origin being a suboptimal solution of the maximization supc∈C

since θ(0, ĉ) = 0 and θ is a non-negative function, the second equality follows from the definition of an
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angle, and the third equality follows from replacing C \ {0} with the normalized C̃.

Since arccos is a decreasing continuous function on [−1, 1], we have that the uncertainty angle satisfies:

inf
ĉ∈Sd

sup
c∈C̃

arccos c′ĉ = inf
ĉ∈Sd

arccos inf
c∈C̃

c′ĉ = arccos sup
ĉ∈Sd

inf
c∈C̃

c′ĉ,

and the circumcenter ĉ that optimizes the uncertainty angle is the same one that solves the problem:

sup
ĉ∈Sd

inf
c∈C̃

c′ĉ. (B-3)

Define the function g(ĉ) = infc∈C c
′ĉ. Then, for any r > 0 and u ∈ Sd, we have that:

g(ĉ+ ru) = inf
c∈C̃

c′(ĉ+ ru) = inf
c∈C̃
{c′ĉ+ rc′u},

From the Cauchy-Schwarz inequality, we know that |c′u| ≤ ∥c∥ · ∥u∥ = 1 since both c and u belong to Sd.

This implies that −r ≤ rc′u ≤ r. Then,

g(ĉ)− r ≤ g(ĉ+ ru) ≤ g(ĉ) + r =⇒ |g(ĉ+ ru)− g(ĉ)| ≤ r,

and we have that g is a continuous function in Rd. Therefore, the problem supĉ∈Sd g(ĉ) from Eq. (B-3) is

an optimization problem with a continuous objective function over a compact space. By the Weierstrass

theorem, the sup is attained. Since the maximizer of Eq. (B-3) is also the minimizer of the uncertainty

angle, the infimum of that problem (the circumcenter) is also attained.

Now we prove uniqueness under the assumption that α(C) < π/2. Suppose for a moment that the

circumcenter is not unique and that ĉ1 and ĉ2 are two distinct optimal solutions of Eq. (B-3). We

will show that we can construct a new solution ĉ3 which is strictly better than ĉ1 and ĉ2, leading to a

contradiction.

Let ĉ3 = (ĉ1 + ĉ2)/2. First we argue that ĉ3 ̸= 0. If ĉ3 = 0, this would imply that ĉ1 = −ĉ2. However,
Since α(C) < π/2, then, it must be the case that c′ĉ1 > 0, for all c ∈ C \ {0} and c′ĉ2 > 0, for all

c ∈ C \ {0}, which implies that c ∈ C \ {0} is empty, violating the assumption of the lemma. Thus,

∥ĉ3∥ > 0. We also have that ∥ĉ3∥ < 1 since ĉ3 is a convex combination of two distinct vectors on the unit

sphere.

Let z be the optimal value of Eq. (B-3), i.e., z = infc∈C̃ c
′ĉ1 = infc∈C̃ c

′ĉ2. Then,

z =
1

2
inf
c∈C̃

c′ĉ1 +
1

2
inf
c∈C̃

c′ĉ2
(a)
<

1
2 infc∈C̃ c

′ĉ1 +
1
2 infc∈C̃ c

′ĉ2

∥ĉ3∥
(b)

≤
infc∈C̃ c

′ (1
2 ĉ1 +

1
2 ĉ2
)

∥ĉ3∥
= inf

c∈C̃
c′
ĉ3
∥ĉ3∥

,

where (a) follows from ∥ĉ3∥ < 1 and (b) follows from combining two infinimums. Since ĉ3/∥ĉ3∥ is a

feasible solution of Eq. (B-3) and its objective value is strictly above z, this would violate the optimality
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of ĉ1 and ĉ2. This is a contradiction, and the circumcenter must be unique.

Proof of Theorem 1. First we show how to construct the upper bound by leveraging the result provided

in Lemma 1. Next we how the construct a set C such that any policy incurs a worst-case regret at least

as high as the upper bound provided for the circumcenter policy.

Step 1. We start by showing that for any policy cπ ∈ P ′, we can bound the objective function from

Eq. (4) using the worst-case regret loss function L for specific choices of nature (c⋆,X , f), defined in Eq.

(8). The following inequality holds for any knowledge set C ⊆ Sd:

inf
π∈P

sup
X∈B, f∈F , c⋆∈C

(
f(xπ)− f(x⋆)

)′
c⋆

(a)

≤ inf
π∈P ′

sup
X∈B, f∈F , c⋆∈C

(
f(xπ)− f(x⋆)

)′
c⋆

(b)
= inf

cπ∈Sd
sup

X∈B, f∈F , c⋆∈C

(
f(xπ)− f(x⋆)

)′
c⋆

(c)

≤ inf
cπ∈Sd

sup
c⋆∈C

L(cπ, c⋆). (B-4)

where (a) follows from restricting π to P ′, (b) follows from representing π ∈ P ′ in terms of its cost vector

cπ, and (c) follows from the definition of L (it would be an equality if xπ were unique).

Let us define:

g(x) =

sinx if 0 ≤ x < π/2,

1 if x ≥ π/2.

Lemma 1 shows that L(cπ, c⋆) = g(θ(c⋆, cπ)). Combining with Eq. (B-4), we have:

inf
π∈P

sup
X∈B, f∈F , c⋆∈C

(
f(xπ)− f(x⋆)

)′
c⋆ ≤ inf

cπ∈Sd
sup
c⋆∈C

g(θ(c⋆, cπ))

= g

(
inf
cπ∈Sd

sup
c⋆∈C

θ(c⋆, cπ)

)
= g(α(C)),

where the first equality follows from g(·) being nondecreasing and continuous, the second equality follows

from the definition of the uncertainty angle and the third equality follows from applying the tighest lower

bound by using the circumcenter policy. Therefore,

inf
π∈P

sup
X∈B, f∈F , c⋆∈C

(
f(xπ)− f(x⋆)

)′
c⋆ ≤ g(α(C)) = g(ᾱ).

Step 2. To show that no policy can be uniformly better than the circumcenter, we construct instances

of the problem where any policy incurs at least the regret g(ᾱ). We first consider the case where ᾱ ≤ π/2.
Let e = 1√

d
(1, · · · , 1)′ and C̃ = {c ∈ Sd : θ(e, c) ≤ ᾱ}, which is the intersection between a sphere and the
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revolution cone with axis e and aperture angle of ᾱ. Note that if ᾱ = π/2 there is no revolution cone,

but it suffices to consider the halfspace C̃ = {c ∈ Sd : c′e ≥ 0}. Moreover, let f(x) = x and X = {x1, x2}
such that δ = x2 − x1 is orthogonal to e and ∥δ∥ = 1.

Define c⋆1 = sin ᾱ · δ + cos ᾱ · e. We now argue that c⋆1 belongs to C̃. We first show that c⋆1 ∈ Sd:

∥c⋆1∥2 = sin2 ᾱ · ∥δ∥2 + cos2 ᾱ · ∥e∥2 = sin2 ᾱ+ cos2 ᾱ = 1,

where the first equality follows from δ and e being orthogonal vectors, and the second equality follow

from δ and e having norm 1. We now show that θ(e, c⋆1) = ᾱ:

θ(e, c⋆1) = arccos
e′c⋆1
∥e∥∥c⋆1∥

= arccos e′c⋆1 = arccos cos ᾱ = ᾱ,

where the second equality follows from e and c⋆1 having norm 1, and the third equality follows from δ and

e being orthogonal.

We now construct a second vector in C̃, c⋆2 = − sin ᾱ · δ + cos ᾱ · e. By the same argument as above,

c⋆2 also belongs to C̃. Note that x1 is the optimal action if c⋆1 is the true cost and x2 is the optimal action

if c⋆2 is the true cost since (x2− x1)′c⋆1 = sin(ᾱ) ≥ 0 and (x2− x1)′c⋆2 = − sin(ᾱ) ≤ 0. Since for any policy

π ∈ P the decision-maker must choose either x1 or x2, we have:

inf
π∈P

sup
X∈B, f∈F , c⋆∈C̃

(
f(xπ)− f(x⋆)

)′
c⋆

(a)

≥ inf
xπ∈{x1,x2}

sup
c⋆∈C̃

(
xπ − x⋆

)′
c⋆

(b)

≥ inf
xπ∈{x1,x2}

sup
c⋆∈{c⋆1,c⋆2}

(
xπ − x⋆

)′
c⋆

(c)
= min{(x2 − x1)′c⋆1, (x1 − x2)′c⋆2},
(d)
= min{δ′c⋆1,−δ′c⋆2}
(e)
= min{sin ᾱ, sin ᾱ} = sin ᾱ,

where (a) follows from our choice of instance (X , f), (b) follows from restricting the choice of c⋆ ∈ C to

{c⋆1, c⋆2}, (c) follows from the fact that x1 is optimal for c⋆1 and x2 is optimal for c⋆2, (d) follows from the

definition of δ, and (e) follows from the definitions of c⋆1 and c⋆2 and the fact that δ and e are orthogonal.

This completes the argument for the case where ᾱ ≤ π/2.
Finally, we now consider the case where π/2 < ᾱ ≤ π. Similarly to the previous case, let C̃ = {c ∈

Sd : θ(e, c) ≤ ᾱ}, however, notice that this set is not a revolution cone anymore. Despite that, it is still

well defined and α(C) = ᾱ, ĉ(C) = e by construction. Moreover, let f(x) = x and X = {x1, x2} such

that δ = x2 − x1 is orthogonal to e and ∥δ∥ = 1. But note that in this case, x1 ∈ C̃ since x′1e = 0 which
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implies that θ(x1, e) = π/2 < ᾱ. By the same argument, x2 ∈ C̃. Therefore, no matter the policy π

used to choose between x1 and x2, nature can always pick a vector in C̃ to cause maximum regret. This

completes the proof.

Proof of Theorem 2. Let π = πgreedy and let ei denote the i-th vector of the canonical basis in Rd.
For c ∈ Rd, we use c[i] to denote the i-th entry of the vector c.

The proof strategy is organized as follows. In step 1, we define a useful family of sets that will

characterize our sequence of knowledge sets. In step 2, we construct choices of sets Xt and context

functions ft so that the greedy policy implies that the sequence of knowledge sets C(It) always belongs
to the family of sets that we defined in step 1. For this construction, we will focus on a 3-dimensional

case, i.e., d = 3. In step 3, we show that the regret in every time period must be uniformly bounded

away from zero regardless of the time horizon, leading to the linear regret.

Step 1. We first define a family of sets that will be central in the construction of instances with linear

regret.

Define h1 = (2 sin2 ᾱ,− sin 2ᾱ, sin 2ᾱ), h2 = (2 sin2 ᾱ,− sin 2ᾱ,− sin 2ᾱ) and h3 = (−ε, 1, 0). Consider
the following family of sets indexed by ᾱ and ε with 0 < ᾱ < π/2 and 0 ≤ ε ≤ (tan ᾱ)/2:

Cε,ᾱ = {c ∈ Rd : h′1c ≥ 0} ∩ {c ∈ Rd : h′2c ≥ 0} ∩ {c ∈ Rd : h′3c ≥ 0} ∩ Sd.

Note that Cε,ᾱ is the intersection of a polyhedral cone with the unit sphere. Using the halfpsaces

defined by h1, h2 and h3, we can compute the generators of such a polyhedral cone. The generators of

the cone are g1 = (1, ε, ε − tan ᾱ), g2 = (1, ε, tan ᾱ − ε) and g3 = (cos ᾱ, sin ᾱ, 0). For simplicity, the

generators were not normalized. The set Cε,ᾱ is always nonempty if ε ≤ tan ᾱ and ᾱ < π/2 and we fix

c⋆ = g3 = (cos ᾱ, sin ᾱ, 0). Using Definition 2, one can also show that ĉ(Cε,ᾱ) = (1, ε, 0). In Figure 8a, we

depict an example of initial knowledge set C0 for ε = 0 and ᾱ = π/4.

Step 2. Fix 0 < ᾱ < π/2 and define a sequence of instances as follows. We let C0 = C0,ᾱ (Figure 8a

depicts the set C0 for ᾱ = π/4). Suppose that ft is the identity for all t ≥ 1 and let

ε1 =
tan ᾱ

2T
, εt = tε1, t ≥ 2,

Xt = {x̄t, 0}, t ≥ 1,

where

x̄t = (e2 − εte1)/∥e2 − εte1∥.

In Figure 8b, we provide an illustration for ᾱ = π/4 and T taken to be 5, so ε1 = 0.1.

Next, we establish by induction on t that, under the greedy circumcenter policy, C(It) = Cεt−1,ᾱ for

t ≥ 2. Note that the result is trivial for t = 1 since C(It) = C0 = C0,ᾱ by construction. Next we establish
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(a) (b)

Figure 8: In (a), we depict the initial knowledge set C0 and its circumcenter. In (b), we depict the first
instance of the optimization problem faced by the decision-maker and the true cost vector c⋆.

the base case (t = 2).

By definition (Eq. (5)) we have that

C(I2) = C0 ∩ {c ∈ Rd : c′f1(x̄1) ≤ c′f1(x), ∀ x ∈ X1}.

Moreover, since C(I1) = C0,ᾱ, f1 is the identity and X1 = {x̄1, 0}, we must have that ĉ(C(I1)) = e1,

ψ(e1, f1,X1) = x̄1 and ψ(c⋆, f1,X1) = 0. Which leads to

C(I2) = C0 ∩ {c ∈ Rd : −ε1c[1] + c[2] ≥ 0} = Cε1,ᾱ,

and the base case is established. Next we show the induction step. Suppose that the result holds for t.

Then, the circumcenter of C(It) is given by (1, ϵt−1, 0). Therefore, ψ(c
π
t , ft,Xt) = x̄t and ψ(c

⋆, f,Xt) = 0,

which leads to the update:

C(It+1) = C(It) ∩ {c ∈ Rd : −εtc[1] + c[2] ≥ 0}

= C0 ∩ {c ∈ Rd : −εt−1c[1] + c[2] ≥ 0} ∩ {c ∈ Rd : −εtc[1] + c[2] ≥ 0}

= C0 ∩ {c ∈ Rd : −εtc[1] + c[2] ≥ 0} = Cεt,ᾱ,

which concludes the proof by induction. Having established the above, we now analyze the regret in each

period t.

Step 3. From step 2, we have for every time t that C(It+1) = Cεt,ᾱ, ĉ(C(It+1)) =
1√
1+ε2t

(1, εt, 0) and
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the regret at period t is given by

δπt
′c⋆ =

(−ϵte1 + e2)
′(cos ᾱ, sin ᾱ, 0)√
1 + ε2t

=
sin ᾱ− εt cos ᾱ√

1 + ε2t
≥ T sin ᾱ− (t/2T ) sin ᾱ√

2
≥ sin ᾱ

4
,

where the first inequality follows from the fact that ε2 ≤ 1. Therefore, the cumulative regret must be

Ω(T ).

In Figure 9a, we can see the initial knowledge set C0 for ᾱ = π/4. In Figure 9b, we have the updated

knowledge set C(I2) = Cε,ᾱ after solving the first optimization instance. In Figure 9c we have the final

set after collecting the feedback of the last time period T = 5. No matter the horizon T , nature can

always adjust ϵ1 as a function of ᾱ and T in in order to ensure that the updates are not enough to make

the circumcenter and the true cost vector sufficiently close to each other.

(a)

(b)

(c)

Figure 9: In (a) we have the initial knowledge set and the first instance of the optimization problem. In
(b), the updated set C(I2), the new circumcenter ĉ(C(I2)), the true cost vector and the previous action
x̄1. In (c), the knowledge set after collecting the feedback of period T .

Proof of Lemma 3. Lemma 3 is a direct application of a more general result, described in Lemma B-1,

stated and proved in Appendix B.1. In particular, if t is a cone update period, we take p = d, η = 0,

δ = δπt and E(W,U) = E(Wt, Ut). We have that δ′ĉ(E(Wt, Ut)) = δπt
′cπt ≤ 0 where the inequality holds

by definition of the effective difference δπt (Eq. 11) and the circumcenter policy applied to ellipsoidal

cones.

Proof of Proposition 1. Note that the circumcenter of E(W,U) is Ue1. Let EH(W ) = E(W ) ∩ H,

where H = {c ∈ Rd : c′e1 = 1}. Next, recall that for any c ∈ E(W ) \ {0}, the first component is always
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greater than zero. Then,

α(E(W,U)) = sup
c∈E(W,U)

θ(c, Ue1) = sup
c∈E(W )

θ(c, e1) = sup
c∈E(W )\{0}

θ(c, e1) = sup
c∈EH(W )

θ(c, e1),

where the second equality follows from the the fact that angles are preserved by orthonormal transforma-

tions, the third equality follows from the suboptimality of {0} and the last equality follows from the fact

that scaling a vector by a positive constant does not affect the angle. Moreover, for every c ∈ EH(W ),

we have that

tan θ(c, e1) = tan arccos
c′e1
∥c∥

= tan arccos
1

∥c∥
,

where the first equality follows from the definition of an angle and the second one follows from EH(W ) ⊂
H. Hence,

tan θ(c, e1) =
√
∥c∥2 − 1 = ∥c[2:d]∥,

where we used the trigonometric identity tan arccosx =
√
1−x2
x for x ∈ [0, π/2). Using the fact that

EH(W ) is an ellipsoid one gets that ∥c[2:d]∥ ≤
√
λmax(M) and the inequality is tight for some c ∈ EH(W ).

Since tan(·) is continuous and monotone increasing on [0, π/2), we get

α(E(W,U)) = sup
c∈EH(W )

θ(c, e1) = sup
c∈EH(W )

arctan (tan θ(c, e1)) = arctan
√
λmax(M).

This completes the proof.

Proof of Lemma 4. Consider any c ∈ E(Wt, Ut) ∩ Sd. Let c̃ = U−1
t c and δ̃πt = U−1

t δπt . Recalling that

for an orthonormal matrix U , U−1 = U ′, the regret in period t if the true underlying cost is c is given by

δπt
′c = δπt

′UtU
−1
t c = (U−1

t δπt )
′
U−1
t c = (δ̃πt )

′c̃.

Note that c̃ ∈ E(Wt) ∩ Sd and hence c̃[1] ∈ (0, 1]. Let ν̃ = c̃[2:d]/c̃[1] and note that (1, ν̃) ∈ EH(W ). In

turn, we have

δπt
′c = c̃[1]

(
δ̃πt,[1] + (δ̃πt,[2:d])

′ν̃
)

≤ c̃[1]

(
δ̃πt,[1] + sup

(1,ν)∈EH(W )
(δ̃π[2:d])

′ν

)
(a)
= c̃[1]

(
δ̃πt,[1] +

√
(δ̃πt,[2:d])

′Wtδ̃πt,[2:d]

)
(b)

≤ c̃[1]

(√
(δ̃πt,[2:d])

′Wtδ̃πt,[2:d]

)
(c)

≤ ϵ,
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where (a) follows from the fact that EH(W ) is an ellipsoid and the optimization of a linear function over

an ellipsoid has an analytical solution as given above (see, for instance, Boyd and Vandenberghe (2004)),

(b) holds due to the fact that δ̃πt,[1] = (δ̃π)′e1 = δπt
′Ute1 = δπt

′cπt ≤ 0 (see Eq. (11)), and (c) follows from

c⋆[1] ≤ 1 and the assumption of the lemma. This completes the proof.

Proof of Lemma 5. Let λi(W ) denote the i-th eigenvalue of W in nondecreasing order. Suppose first

that λ1(W1) >
(

ϵ
10(d−1)

)2
. By Lemma 3, we have that that for every update period t,

d−1∏
i=1

λi(Wt+1) ≤ e−1/(d−1)
d−1∏
i=1

λi(Wt).

For any time t after exactly IπT updates took place, we can apply the latter recursively to obtain

d−1∏
i=1

λi(Wt) ≤ e−I
π
T /(d−1)

d−1∏
i=1

λi(W1) ≤ e−I
π
T /(d−1)(λmax(W1))

d−1. (B-5)

Next we lower bound, for any t, the eigenvalues λi(Wt). We will establish that λ1(Wt) ≥
(
ϵ

10d

)2
for

all t ≥ 1.

If IπT = 0, then we have that λ1(Wt) = λ1(W1) >
(

ϵ
10(d−1)

)2
>
(
ϵ

10d

)2
.

Suppose now that IπT > 0. We will show by induction that λ1(Wt) ≥
(
ϵ

10d

)2
for all t ≥ 1.

This clearly true for t = 1. Suppose that it is true at time s. If there is no update, then this is

trivially true for s+ 1. If there is an update s, two cases can happen.

Case 1: λ1(Ws) >
(

ϵ
10(d−1)

)2
. Note that the largest decrease possible in any eigenvalue after applying

the ellipsoid method in Rd−1 is (d− 1)2/d2 (this is the decrease that happens when the cut is along that

particular eigenvector). As a result, we must have λ1(Ws+1) ≥ ((d− 1)2/d2)
(

ϵ
10(d−1)

)2
=
(
ϵ

10d

)2
.

Case 2: λ1(Ws) ≤
(

ϵ
10(d−1)

)2
. In this case, given that updates are only performed when δ′s,[2:d]Wsδs,[2:d] >

ϵ2, we can use (Cohen et al., 2020, Lemma 4). Indeed, in an update period, the second to the fourth

update equations in algorithm ConeUpdate are precisely the update equations for the ellipsoid method

for an ellipsoid in Rd−1. Cohen et al. (2020) introduce a version of the ellipsoid method where updates

are not performed if the length of the ellipsoid along the direction to be cut is smaller than a certain

threshold ϵ. The condition in Eq. (12) for an update in our paper is essentially the same (our condition

is on the distance from the center to the edge of the ellipsoid, but this is simply half the length).

Recall the notation used in algorithm ConeUpdate and note that every time that we update the

matrix Wt with the ellipsoid method, we get a matrix N . Let λ1(N) denote the smallest eigenvalue of

the matrix N . By construction, if t is an update period, we have that λ1(Wt+1) = λ1(N). Lemma 4

from Cohen et al. (2020) says that if we update our ellipsoidal cone according to algorithm ConeUpdate,
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if λ1(Ws) ≤
(

ϵ
10(d−1)

)2
and δ′s,[2:d]Wsδs,[2:d] > ϵ2, then λ1(Ws+1) ≥ λ1(Ws), i.e., the smallest eigenvalue

does not decrease after the update.

In this case, we deduce that λ1(Ws+1) ≥ λ1(Ws) ≥
(
ϵ

10d

)2
, where the last inequality follows from the

induction hypothesis. This concludes the induction.

Combining this result with (B-5), we obtain

λmax(Wt) ≤
(
10d

ϵ

)2(d−2)

(λmax(W1))
(d−1) e−I

π
T /(d−1).

Suppose now that λ1(W1) ≤
(

ϵ
10(d−1)

)2
. By construction, W1 is a revolution cone and λi(W1) =

λ1(W1) for i = 1, ..., d − 1. For any vector δ ∈ Rd−1 with ∥δ∥ ≤ 1, we have δ′W1δ ≤ ∥δ∥2λmax(W1) ≤(
ϵ

10(d−1)

)2
≤ ϵ2. Hence, in this case, no update takes place, IπT = 0, Wt =W1 for all t, and by Lemma 4,

the per period regret is bounded above by ϵ. This concludes the proof.

Proof of Theorem 3. We prove Theorem 3 in four steps. In the first step, we prove that C0 ⊆
E(W1, U1) and, that for every t ≥ 1, C(It) ⊆ E(Wt+1, Ut+1). In the second step, we decompose the

cumulative regret based on periods in which the condition in Eq. (12) is satisfied or violated. In the

third step, we upper bound the number of times that Eq. (12) can be violated, to obtain a bound on the

cumulative regret. In the fourth step, we prove the running time claim.

Step 1. Note that E(W1, U1), by construction, is precisely the revolution cone with aperture angle α(C0)

that contains C0. The inclusions C(It) ⊆ E(Wt+1, Ut+1), 1 ≤ t ≤ T follows from our construction and

Lemma 3.

Step 2. Recall that IπT =
∑T

t=1 1{δ′t,[2:d]Wtδt,[2:d] > ϵ2} is the number of cone-update periods. We have
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the following regret bound.

RπT
(
c⋆, X⃗T , f⃗T

)
=

T∑
t=1

(ft(x
π
t )− ft(x⋆t ))

′ c⋆

=

T∑
t=1

∥ft(xπt )− ft(x⋆t )∥δπt
′c⋆

(a)

≤
T∑
t=1

(
1{δ′t,[2:d]Wtδt,[2:d] > ϵ2}+ 1{δ′t,[2:d]Wtδt,[2:d] ≤ ϵ2}

)
δπt

′c⋆

(b)

≤
T∑
t=1

1{δ′t,[2:d]Wtδt,[2:d] > ϵ2}δπt
′c⋆ +

T∑
t=1

1{δ′t,[2:d]Wtδt,[2:d] ≤ ϵ2}ϵ

(c)

≤
T∑
t=1

1{δ′t,[2:d]Wtδt,[2:d] > ϵ2}+
T∑
t=1

1{δ′t,[2:d]Wtδt,[2:d] ≤ ϵ2}ϵ

= IπT + (T − IπT ) ϵ

≤ IπT + Tϵ, (B-6)

where (a) follows from the fact that ∥ft(xπt )− ft(x⋆t )∥ ≤ 1 since ft ∈ F , Xt ∈ B, for all t ≤ T , (b) follows
from Lemma 4, and (c) follows from Cauchy-Schwarz inequality: δπt

′c⋆ ≤ ∥δπt ∥∥c⋆∥ = 1.

Step 3. We now provide an upper bound for IπT . We need to consider two separate cases as a function

of α(C0).

If α(C0) ≤ arctan ϵ, an application of Theorem 1 shows that the regret of every period is less than

sin arctan ϵ = ϵ/(1 + ϵ) which is enough to ensure a performance of at least ϵ when using the circum-

center as the proxy cost vector. Moreover, Proposition 1 and our choice of E(W1, U1) in Algorithm

EllipsoidalCones implies that λmax(W1) ≤ ϵ2, and hence, for every possible vector δ, δ′[2:d]W1δ[2:d] ≤ ϵ2.
In this case, the algorithm never has a cone-update period and IπT = 0. Therefore, Eq. (B-6) implies that

the regret is bounded by Tϵ, which is equal to d by our choice of ϵ.

When α(C0) > arctan ϵ, we may have cone-update periods. We show that after an O(log 1/ϵ) amount

of update steps, it must be the case that α(E(Wt, Ut)) < arctan ϵ. Then, from this time onward, it must

be the case that the algorithm never updates again and Lemma 4 implies that the regret is upper bounded

by ϵ for every period from this time onward.

Suppose that we updated the ellipsoidal cone τ times. Lemma 5 and the revolution cone initialization,

λ1(W1) = · · · = λd−1(W1) = tan2 α(C0) gives us that

λmax(Wt) ≤
(
10d

ϵ

)2(d−2)

(λmax(W1))
d−1 e

− τ
(d−1) =

(
10d

ϵ

)2(d−2)

(tanα(C0))
2(d−1)e

− τ
(d−1) ,
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for every t after τ updates. Note that if we have τ = 2(d− 1)2 ln
(
10d tanα(C0)

ϵ

)
, then

λmax(Wt) ≤
(
10d

ϵ

)2(d−2)

(tanα(C0))
2(d−1)e

−
2(d−1)2 ln

(
10d tanα(C0)

ϵ

)
(d−1)

≤
(
10d

ϵ

)2(d−1)−2

(tanα(C0))
2(d−1)

(
10d tanα(C0)

ϵ

)−2(d−1)

≤
(
10d

ϵ

)−2

.

In this case, starting after τ updates, we are as in case ii.) of Lemma 5; there will be no cone-update

periods onward, and the per period regret will bounded by ϵ in future periods. In turn,

IπT ≤ 2(d− 1)2 ln

(
10d tanα(C0)

ϵ

)
. (B-7)

Combining Eqs. (B-6) and (B-7), and selecting ϵ = d/T leads to:

RπT
(
c⋆, X⃗T , f⃗T

)
≤ 2(d− 1)2 ln

(
10d tanα(C0)

ϵ

)
+ Tϵ ≤ 2(d− 1)2 ln (10T tanα(C0)) + d.

Step 4. This algorithm runs in polynomial time in d and T since every period’s computation is a function

only of d. Low-regret periods are computationally very cheap, while each cone-update period requires a

spectral decomposition, which has a running time upper bound of O(d3).
The proof is complete.

Proof of Lemma 6. The subspace ∆t0+1 is a one-dimensional object and, by the definition of ∆t0+1,

we have that for every element c ∈ Π∆t0+1 (C(It0+1)), c = γδπt0 for some γ ∈ R. Moreover, for every

t ≥ t0, Eq. (10) implies that we must have for every c ∈ C(It) that δπt0
′c ≥ 0. Since δπt0 ∈ ∆t0+1, we have

that δπt0
′c ≥ 0 ⇐⇒ δπt0

′Π∆t0+1(c) ≥ 0. Hence,

Π∆t0+1 (C(It0+1)) ⊆ {c ∈ Rd : c = γδπt0 , γ ≥ 0} =⇒ α(Π∆t0+1 (C(It0+1))) = 0,

and Π∆t0+1 (C(It0+1)) lives in a pointed cone.

The second affirmative follows directly from the fact that whenever ft(x
π
t ) = ft(x

⋆
t ), there is no

suboptimality gap and the regret is zero.

Proof of Lemma 7. For every time t, we have that

sup
x⋆t∈ψ(c⋆,Xt,ft)

(ft(x
π
t )− ft(x⋆t ))

′ c⋆
(a)

≤ δπt
′c⋆ = rπt

′c⋆ +Π∆t(δ
π
t )

′c⋆
(b)

≤ η +Π∆t(δ
π
t )

′Π∆t(c
⋆),
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where (a) follows from the fact that ft ∈ F , Xt ∈ B and (b) follows from bounding rπt
′c⋆ with η since we

assumed ∥rπt ∥ ≤ η, and replacing c⋆ with its projection onto ∆t.

Next, we show that Π∆t(δ
π
t )

′Π∆t(c
⋆) ≤ ϵ when the assumptions of the lemma are satisfied. For

that, note that Π∆t(δ
π
t ) ∈ ∆t and E(Wt, Ut) ⊂ ∆t. Moreover, we have by assumption that Π∆t(c

⋆) ∈
Π∆t(C(It)) ⊆ E(Wt, Ut). Hence, an application of Lemma 4 in the subspace ∆t completes the proof.

Proof of Lemma 8. First we show that we do not exclude any feasible vector when we update the

ellipsoidal cone using the projected effective difference. By the definition of the residual, we have that,

for any c ∈ C(It+1), that δ
π
t
′c = Π∆t+1(δ

π
t )

′c + rπt
′c ≥ 0, where the inequality follows from Eq. (10).

Therefore,

Π∆t+1 (C(It+1)) ⊆ Π∆t+1

(
C(It) ∩ {c ∈ Rd : δπt

′c ≥ 0}
)

⊆ Π∆t+1

(
C(It) ∩ {c ∈ Rd : Π∆t(δ

π
t )

′c ≥ −η}
)

= Π∆t

(
C(It) ∩ {c ∈ Rd : Π∆t(δ

π
t )

′Π∆t(c) ≥ −η}
)

⊆ Π∆t (C(It)) ∩ {c ∈ ∆t : Π∆t(δ
π
t )

′c ≥ −η}

⊆ E(Wt, Ut) ∩ {c ∈ ∆t : Π∆t(δ
π
t )

′c ≥ −η},

where the first inclusion follows from the fact that including elements in a set can only include elements

in the projection of that set, the second inclusion follows from applying Chauchy-Schwarz for rπt
′c and

using that ∥rπt ∥ ≤ η, the equality follows the fact that Π∆t(δ
π
t ) ∈ ∆t, which implies that Π∆t(δ

π
t )

′c =

Π∆t(δ
π
t )

′Π∆t(c) and the fact that ∆t+1 = ∆t, the third inclusion follows from the fact that the orthogonal

projection of the intersection of sets must belong to the orthogonal projection of each of the sets and,

finally, the last inclusion follows from assumption of the lemma.

The next step is a direct application of Lemma 8. For every cone update period t, we focus on

the subspace ∆t which has dimension 2 ≤ p ≤ d. We represent the vectors in ∆t under its basis

representation by calculating B∆tc ∈ Rp for every c ∈ ∆π
t . Therefore, it suffices to apply Lemma B-1

with p = p, δ = B∆tΠ∆t(δ
π
t ), η = η and E(Wt, Ut), where the matrices Wt, Ut are already written in the

basis representation of ∆t by construction.

The final step of this proof is to show that our choice of η and δ satisfy the assumptions of the lemma,

meaning that the shallow-cut is sufficiently deep to ensure a volume reduction. Since

Π∆t(δt)
′
[2:p]WtΠ∆t(δt)[2:p] > ϵ2 =⇒ 1√

Π∆t(δt)
′
[2:p]WtΠ∆t(δt)[2:p]

<
1

ϵ
,
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we have that, for η = ϵ/2d and 1 < p ≤ d:

η ≤

√
Π∆t(δt)

′
[2:p]WtΠ∆t(δt)[2:p]

2d
≤

√
Π∆t(δt)

′
[2:p]WtΠ∆t(δt)[2:p]

2(p− 1)
=

√
(B∆tΠ∆t(δt)[2:p])

′WtB∆tΠ∆t(δt)[2:p]

2(p− 1)

The desired inclusion and the reduction in the product of the eigenvalues follows directly from

Lemma B-1.

Proof of Lemma 9. In order to prove the result, we will follow the same strategy as in the proof of

Lemma 5. For the boundary cases where t = tp0 for 2 ≤ p ≤ d, the ellipsoidal cone E(Wt, Ut) is constructed

by a dimension update period, and we must have that λ1(Wtp0
) = λmax(Wtp0

).

Suppose λ1(Wtp0
) >

(
ϵ

10p

)2
. The shallow-cut equivalent of Lemma 4 from Cohen et al. (2020) says that

if we update our ellipsoidal cone according to Eq. (13), if λ1(Wt) ≤ ϵ2

100(p−1)2
and δ′t,[2:p]Wtδt,[2:p] > ϵ2,

then λ1(Wt+1) ≥ λ1(Wt), i.e., the smallest eigenvalue does not decrease after the update. Since the

largest decrease possible in any eigenvalue after applying the ellipsoid method in Rp−1 is (p − 1)2/p2

(this is the decrease that happens when the cut is along that particular eigenvector), we have that for all

tp0 < t < tp+1
0 (all time periods where the dimensionality of ∆t is p) that

λ1(Wt+1) ≥
(p− 1)2

p2
ϵ2

100(p− 1)2
=

(
ϵ

10p

)2

.

We omit the induction argument here since it mimics the proof of Lemma 5. Hence,

λp−1(Wt) ≥
(

ϵ

10p

)2

.

Moreover, the shrinking factor of Lemma 8 gives us that

p−1∏
i=1

λi(Wt+1) ≤ e−1/20(p−1)
p−1∏
i=1

λi(Wt).

Using the lower bound for the eigenvalues of Wt gives us that

λmax(Wt) ≤
(
10p

ϵ

)2(p−2)

(λmax(W1))
(p−1) e

−
I
π,p
T

20(p−1) ,

similarly to the proof of step 3 of Theorem 3, we must have that

Iπ,pT ≤ 20(p− 1)2 ln

(
10p tanα(E(Wtp0

, Utp0))

ϵ

)
,

where tp0 is the first time such that the dimension of ∆t = p and E(Wt0 , Ut0) the initial ellipsoidal cone.
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If λ1(Wtp0
) ≤

(
ϵ

10p

)2
, then noting that λmax(Wtp0

) = λ1(Wtp0
), the same argument from Lemma 5

holds and Iπ,pT = 0, while Lemma 7 ensures a upper bound of ϵ for each period regret t such that

dim(∆t) = p.

Proof of Lemma 10. The proof is divided in three parts. First we show the inclusion, then we show

how to compute the circumcenter, and finally we prove the bound for the uncertainty angle.

Inclusion. The definition of the knowledge set implies that for every c ∈ C(It), δπt ′c ≥ 0. In

particular, this holds for all i ∈ τ(t). Moreover, by definition, δπi ∈ ∆t for all i ∈ τ(t). Hence, for every

c ∈ C(It), we have that δπi
′c = δπi

′Π∆t(c) ≥ 0 for all i ∈ τ(t), which implies that Π∆t(C(It)) ⊆ Kt.

Computation of circumcenter. The computation of the circumcenter of Kt is done via algorithm

PolyCenter (see Algorithm 3). The subspace updating rule implies that δπi , i ∈ τ(t) are linearly inde-

pendent. Hence, the system of equations described has one and only one solution for each iteration k. In

addition, we have that z is a vector in the interior of the cone {c ∈ Rp : c =
∑
γiδ̄i, γi ≥ 0, i ∈ τ(t)},

which is the dual cone of Kt (Boyd and Vandenberghe, 2004). Hence, c′z > 0, for all c ∈ Kt and

Kt ∩ {c ∈ Rp : c′z ≤ 1} is bounded with extreme points given by the rays (not normalized) of Kt and

the origin. To see why the quadratic program in PolyCenter yields to the solution of the circumcenter,

we refer to Seeger and Vidal-Nuñez (2017). The algorithm runs in polynomial time in p since it contains

p linear systems with p equations and one quadratic programming formulation.

Upper bound for the uncertainty angle.

For any convex, closed and pointed cone K ⊂ Rd, we define the circumradius of the cone µ(K) to be

equal to sine of its uncertainty angle, i.e., µ(K) = sinα(K). In this proof, we will show that

µ(Kt+1)≤

√
1− η2(p−1)

p3
. (B-8)

Once we prove that Eq. (B-8) is true, it follows that

cosα(Kt+1) =
√
1− µ2(Kt+1) ≥

η(p−1)

p3/2
≥ η(d−1)

d3/2
,

where the second inequality follows from the facts that 0 < η < 1 and p ≤ d, completing the result.

Just as circumradius (and uncertainty angle) are defined by the smallest revolution cone that contains

our cone of interest, we also need to define the largest revolution cone that fits within a cone of interest.

For any convex, closed and solid cone K, we define the inradius of K to be:

ρ(K) = max
x∈Sd∩K

min
y∈∂K

∥x− y∥.

We denote xρ = argmaxx∈Sd∩K miny∈∂K ∥x − y∥ as the incenter of K, which is analogous to the
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circumcenter, but referring to the axis of the largest revolution cone inside our cone of interest. The

inradius and circumradius of a cone K are dual quantities in the sense that for every closed convex cone,

we have that:

µ2(K) + ρ2(K⋆) = 1, (B-9)

where K⋆ = {c ∈ Rd : c′x ≥ 0, ∀x ∈ K} denotes the dual cone of K (Henrion and Seeger, 2010, Theorem

1.4). We will develop a lower bound on ρ(K⋆
t+1) and then obtain through Eq. (B-9) our desired upper

bound on µ(Kt+1).

The lower bound for ρ(K⋆
t+1) is obtained by an application of three lemmas that are interesting by its

own that we prove in the appendix. The first one, Lemma B-2, shows that the inradius of K⋆
t+1 can be

lower bounded by the ratio of the largest and smallest eigenvalue of the gram-matrix (the square matrix)

constructed with it’s generators. Suppose dim(∆t+1) = p ≤ d. We denote gi = B∆t+1δ
π
τ(t+1)(i) ∈ Rp, for

i = 1, ..., p, where we used the notation δπτ(t+1)(i) to denote the i− th effective difference that belongs to

τ(t + 1). Let G be the matrix such that its columns are given by gi, i = 1, ..., p. By construction, the

columns of gi are linearly independent and we have p vectors generating K⋆
t+1 that lives in a subspace

with dimension p and the assumptions of Lemma B-2 are satisfied. The lemma gives us that

ρ(K⋆
t+1) ≥

1
√
p

√
λmax(G′G)

λmin(G′G)
.

The second lemma, Lemma B-3, allows us to provide an upper-bound for λmax(G′G)
λmin(G′G) . Note that G is

full column rank with unit norm vectors by construction (the change of basis through B∆t+1 do not affect

the norm of the effective differences vectors), and the assumption of the lemma is satisfied. Let Πg−i(.)

denote the projection operator on the subspace generated by {g1, . . . , gp} \ {gi}. Define

φ = min
i≤p
∥gi −Πg−i(gi)∥,

and note that ϕ is the minimum norm obtained by regressing the column gi on every other columns.

Lemma B-3 implies that
λmax(G

′G)

λmin(G′G)
≤
(
p

φ

)2

.

The final step in our proof is to show that φ cannot be arbitrarily small. In Lemma B-4, we show

that if the sequence of the gi’s satisfy ∥gi − Πg1,...,gi−1(gi)∥2 ≥ η2, (which is true due to the subspace

updating rule) then it must be the case that ∥gi −Πg−i(gi)∥ ≥ η2(p−i) for i = 1 or greater than η2(p−i) if

i > 1. Taking i = 1 (or i = 2) ensures that ∥gi − Πg−i(gi)∥ ≥ η2(p−1) for every i. Then, the combination

of the three lemmas establishes that the inradius of K⋆
t+1 is lower bounded by ηp−1

p3/2
≥ ηd−1

d3/2
, concluding

the proof of Lemma 10.
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Proof of Theorem 4. We prove the result in four steps. First, we establish that Π∆t(C(It)) ⊆ E(Wt, Ut)

for every t, and thus we never lose track of the true cost. In a second step, we decompose the cumulative

regret as a function of the different kinds of periods in algorithm ProjectedCones and provide an upper

bound for the one-period regret under each case. In the third step, we upper bound the number of peri-

ods that we use cone-updates to obtain our regret bound. In the fourth step, we prove the polynomial

runtime.

Step 1. We show that, for each time t, the set E(Wt, Ut) contains Π∆t (C(It)). We establish the

result by induction on t. E(W2, U2) trivially contains Π∆2 (C(I2)), so the base case is satisfied. We

next consider t ≥ 2. Suppose that E(Wt, Ut) is such that Π∆t (C(It)) ⊆ E(Wt, Ut). We then analyze

E(Wt+1, Ut+1) as a function of the three situations that can happen at time t, no update (low-regret

period), cone update, or subspace update.

No update. This case is trivial since C(It+1) ⊆ C(It), E(Wt+1, Ut+1) = E(Wt, Ut), and ∆t+1 = ∆t,

thus Π∆t+1 (C(It+1)) ⊆ E(Wt+1, Ut+1).

Cone update. This inclusion follows from Lemma 8.

Subspace update. Lemma 10 shows that Π∆t+1(C(It+1)) is contained in Kt+1. Our choices of Wt+1

and Ut+1 ensure thatKt+1 is included in E(Wt+1, Ut+1). The same lemma also shows that the constructed

ellipsoidal cone is large enough to contain Kt+1.

Step 2. Lemma 7 shows that we incur at most regret ϵ+η in low-regret periods. Therefore, our total

regret from low-regret periods is bounded by T (ϵ + η). For all other periods, we use the trivial regret

upper bound of 1. There are at most d subspace-update periods, so the total regret from subspace-update

periods is bounded by d. Let Iπ,pT be the number of periods where the subspace has dimension p and we

use a cone-update. Bounding the regret of these cone-update periods by 1 as well, we have that for any

c⋆ ∈ Sd, ft ∈ F , and Xt ∈ B, the total regret is bounded by:

RπT
(
c⋆, X⃗T , f⃗T

)
≤ T (ϵ+ η) + d+

d∑
p=2

Iπ,pT , (B-10)

where the last sum starts from p = 2 because there are never cone-updates when p = 1.

Step 3. Lemma 9 shows that for any p = 2, ..., d, we have

Iπ,pT ≤ 20(p− 1)2 ln

(
10p tanα(E(Wt0 , Ut0))

ϵ

)
,

where t0 refers to the period where the subspace was increased to p. For simplicity, we replace p−1 and p

with the larger value d: Iπ,pT ≤ 20d2 ln
(
10d tanα(E(Wt0 ,Ut0 ))

ϵ

)
. At period t0, the subspace update constructs

a revolution cone such that α(E(Wt0 , Ut0)) = arccos ηd−1/d3/2 (see Lemma 10). Since tan(x) ≤ 1/ cos(x),
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we have that tanα(E(Wt0 , Ut0)) ≤ d3/2/ηd−1. Summing over all p:

d∑
p=2

Iπ,pT ≤ 20d3 ln

(
10d5/2

ϵηd−1

)
.

Plugging the bound above into Eq. (B-10) and selecting ϵ = d/T , η = ϵ/2d leads to:

RπT
(
c⋆, X⃗T , f⃗T

)
≤ T (ϵ+ η) + d+ 20d3 ln

(
10d5/2

ϵηd−1

)
= d+ 2 + d+ 20d3 ln(5d3/2T d2d)

= 2 + 2d+ 20d3 ln 5 + 30d3 ln(d) + 20d4 ln(2T ) = O(d4 lnT ).

Step 4. This algorithm runs in polynomial time in d and T because every period’s computation is a

function only of d. Low-regret periods are computationally very cheap. Each cone-update period requires

a spectral decomposition which has a running time upper bound of O(p3). Each subspace-update period

requires the computation of a new circumcenter via algorithm PolyCenter, which runs in polynomial

time in d (cf. Lemma 10). This completes the proof.

B.1 Auxiliary Results

Lemma B-1 (Robust ellipsoidal cone updates). Consider a diagonal and positive-definite matrix W ∈
Dp−1
++ and an orthonormal matrix U ∈ Rp × Rp and define the ellipsoidal cone E(W,U) ⊂ Rp. Fix η ≥ 0

and a vector δ ∈ Rp such that η ≤
√
δ′[2:p]Wδ[2:p](2(p− 1))−1 and δ′ĉ(W,U) ≤ 0. Define

δ̄ = U−1δ[2:p]/∥U−1δ[2:p]∥, β = − η√
δ̄′Wδ̄

, b =
Wδ̄√
δ̄′Wδ

, a =
1 + (p− 1)β

p
b,

and

N =
(p− 1)2

(p− 1)2 − 1
(1− β2)

(
W − 2(1 + (p− 1)β)

p(1 + β)
bb′
)
, M =

(
1 a′

a aa′ −N

)
.

Let V ΛV ′ denote the spectral decomposition of the matrix M . Then

E(W,U) ∩ {c ∈ Rd : δ′c ≥ −η} ⊆ E(W̃ , Ũ)

for Ũ = UV, and W̃ is a diagonal matrix such that W̃i,i = λi(N), i = 1, · · · , d−1., where the eigenvalues

are in a nonincreasing order. Moreover, if η = 0,
∏d−1
i=1 λi(W̃ ) ≤ e−1/2(d−1)

∏d−1
i=1 λi(W ). Otherwise∏d−1

i=1 λi(W̃ ) ≤ e−1/20(d−1)
∏d−1
i=1 λi(W ).

App-22



Proof of Lemma B-1. We first consider the case where U is the identity matrix, so that E(W,U) =

E(W ) and δ̄ = δ. The proof strategy is as follows. In the first step, we show that E(W )∩{c ∈ Rd : δ′c ≥
0} is contained in a half-ellipsoidal cone. Second, we show that we can use a variation of the ellipsoid

method to update this half-ellipsoidal cone and construct an appropriate updated ellipsoidal cone. In a

third step, we apply a theorem from Seeger and Vidal-Nuñez (2017) in order to characterize the obtained

ellipsoidal cone in terms of a standard-position cone and its orthonormal rotation.

Step 1. Let us consider the intersection of E(W ) and a hyperplane characterized by its circumcenter

ĉ(E(W )) = e1. We denote such a hyperplane as H = {c ∈ Rd : e′1c = 1}. Since c[1] > 0 and E(W ) is a

cone, we can scale any element c ∈ E(W ) such that the scaled vector lies in the intersection. Moreover,

the intersection will be an ellipsoid given by

EH(W ) = {c ∈ R+ × Rd−1 : c′[2:d]W
−1c[2:d] ≤ 1, c[1] = 1},

which is precisely the equation of an ellipsoid in Rd−1 that lives in a (d− 1)- dimensional subspace of Rd.
The ellipsoid EH(W ) defined above was obtained by a specific type of projection known in the literature

as the perspective projection of E(W ) onto the hyperplane H.

Let us define also A = E(W ) ∩ {c ∈ Rd : δ′c ≥ −η}. Next, consider some c ̸= 0 ∈ A. Since

A ⊆ E(W ), we must have c[1] > 0. Moreover, A is a cone since it is the intersection of two cones. Then,

c/c[1] ∈ A and c/c[1] ∈ H. Hence,

c/c[1] ∈ A ∩H

= E(W ) ∩H ∩ {c ∈ Rp : δ′c ≥ −η}

= EH(W ) ∩ {c ∈ Rd : δ′c ≥ −η}
(a)
= EH(W ) ∩ {c ∈ Rd : δ[1] + δ[2:d]

′c[2:d] ≥ −η}
(b)

⊆ EH(W ) ∩ {c ∈ Rd : δ[1] + δ[2:d]
′c[2:d] ≥ −η + δ′ĉ(E(W ))}

(c)

⊆ EH(W ) ∩ {c ∈ Rd : δ[2:d]′c[2:d] ≥ −η},

where (a) follows from the fact that EH(W ) ⊂ H so c[1] = 1. (b) follows from the fact that ĉ(E(W ))′δ ≤ 0

by assumption and (c) follows from the fact that = ĉ(E(W ))′δ = e′1δ = δ[1] ≤ 0. The set of the last

equation is precisely the ellipsoid EH(W ) with a shallow-cut, and hence is a description of a half-ellipsoid.

Step 2. We now use the ellipsoid method update to replace this half-ellipsoid with its own Löwner-

John ellipsoid. The definitions of a, N and β are precisely the ones for an ellipsoid update with shallow-cut

(See Eq. (3.1.16) and Eq. (3.1.17) of Grötschel et al. (1993)). Therefore,

EH(W ) ∩ {c ∈ Rd : δ̄′[2:d]c[2:d] ≥ −η} ⊆ {c ∈ Rd : (c[2:d] − a)′N−1(c[2:d] − a) ≤ 1, c[1] = 1}.
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Furthermore, since c[1] > 0, we have that

c/c[1] ∈ {c ∈ Rd : (c[2:d] − a)′N−1(c[2:d] − a) ≤ 1}

if and only if

c ∈ {c ∈ Rd : (c[2:d] − c[1]a)′N−1(c[2:d] − c[1]a) ≤ c2[1]}.

Hence, if c ∈ A, then we must have that c ∈ {c ∈ Rd : (c[2:d] − c[1]a)′N−1(c[2:d] − c[1]a) ≤ c2[1]}.
We finish the second step by showing the contraction in the product of the eigenvalues of the matrix

N (or equivalently, its volume).

Note that if η = 0, the update equations reduces to the standard update equations of the ellipsoid

method, then the standard volume reduction of the holds and we get
∏p−1
i=1 λi(N) ≤

∏p−1
i=1 λi(W )e1/2(p−1).

If η > 0, we need to argue that the shallow cuts are still sufficiently deep to induce a reduction in

the product of the eigenvalues first need to ensure that β ≥ 1/(p − 1) in order to have
∏p−1
i=1 λi(N) ≤∏p−1

i=1 λi(W )e(1+β(p−1))/5(p−1) (See Eq. (3.3.21) of Grötschel et al. (1993)). Since in this case

0 < η ≤

√
δ′[2:p]Wδ[2:p]

2(p− 1)

we have that,

β = − η√
δ′[2:p]Wδ[2:p]

≥ − 1

2(p− 1)
,

substituting the lower bound of β above leads to
∏p−1
i=1 λi(N) ≤

∏p−1
i=1 λi(W )e1/20(p−1).

Step 3. We have now constructed an ellipsoidal cone {c ∈ Rd : (c[2:d]−c[1]a)′N−1(c[2:d]−c[1]a) ≤ c2[1]}
that contains the half ellipsoidal cone of interest, which is a cone not in standard position. However, in-

stead of having the set described by a rotation orthonormal basis, we have it described via a translation of

the center of the ellipsoid at H. In the remainder of this proof, we show how to construct a representation

of this ellipsoidal cone that is consistent with our Definition 4. That is, we need to find a mapping from

the parameters N and a to the matrices W and U .

To find this mapping, we apply a theorem from (Seeger and Vidal-Nuñez, 2017, Theorem 4.4 page

296). The theorem states that for

M =

[
1 a′

a aa′ −N

]
,

the matrix M is invertible and the spectral decomposition M = V ΛV ′ allows us to write the ellipsoidal

cone E(Ŵ , Û) that is identical to {c ∈ Rd : (c[2:d] − c[1]a)′N−1(c[2:d] − c[1]a) ≤ c2[1]}, but in standard

representation. This ellipsoidal cone is given by Û = V and Ŵ equal to the diagonal matrix with

diagonal entries Ŵii given by −λi+1(M)/λ1(M), for i = 1, · · · , d− 1, where the eigenvalues of M are in
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nonincreasing order.

For our ellipsoidal update, we will use the same orthonormal rotation as the one produced by Seeger

and Vidal-Nuñez’s theorem: Ũ = Û . At this point, we could declare the proof done if we had also defined

in the algorithm W̃ to be equal to Ŵ . However, in order to facilitate our analysis, we use a different

choice of W̃ by setting W̃ii = λp−i(N) for all i = 1, ..., p − 1. Hence, in order to conclude the proof, we

still need to show that our choice of W̃ has eigenvalues that are at least as large as Ŵ . To be specific, we

need to prove that for all i = 1, ..., p− 1, λi(Ŵ ) = −λi+1(M)/λ1(M) ≤ λi(N) = λi(W̃ ). Our definitions

of M , N and a satisfy:

M =

[
0 0

0 −N

]
+

[
1

a

][
1

a

]′
.

Since the matrix N is obtained by one iteration of the ellipsoid method, we must have that N has strictly

positive eigenvalues. Hence, the interlacing theorem (Hwang, 2004) implies that M has one positive

eigenvalue and d− 1 negative eigenvalues.

Furthermore, we have that λmax(M) = λ1(M) = supc∈Sd c′Mc. Since c = e1 satisfies c′Mc = 1, we

must have that λ1(M) ≥ 1. Finally, another application of the interlacing theorem for M gives us that

for i = 1, · · · , d− 1, satisfies λi+1(M) ≥ λi(−N), and we get that

−λi+1(M)/λ1(M) ≤ −λi+1(M) ≤ −λi(N) = λp−i(N) = λi(W̃ ), i = 1, · · · , p− 1.

Hence, the choice of W̃ in algorithm ConeUpdate is at least as large as necessary, which concludes the

proof for the case where U is the identity matrix.

For the general case (when U is not the identity matrix), it suffices to rotate δ by U−1, which is

equivalent to analyze the problem under the basis representation given by the rows of U . After that, we

return to the canonical basis by rotating V by U , which leads to Ũ = UV .

Lemma B-2 (Inradius of simplicial cones). Fix p ≥ 2 and let K ⊂ Rp denote a simplicial cone, i.e., it

can be written as K = {c ∈ Rp : c =
∑p

i=1 αigi, αi ≥ 0}, where the gi’s are linearly independent unit

norm vectors. Define G ∈ Rp×Rp to be the matrix where the columns are the generators gi, i = 1, · · · , p.
We have that the inradius ρ(K) := maxx∈Sd∩K miny∈∂K ∥x− y∥ is lower bounded as follows

ρ(K) ≥ 1
√
p

√
λmin(G′G)

λmax(G′G)
.

Proof of Lemma B-2. We denote xρ = argmaxx∈Sd∩K miny∈∂K ∥x− y∥ as the incenter of K, which is

analogous to the circumcenter, but referring to the axis of the largest revolution cone inside our cone of

interest. Let P denote the nonnegative orthant in Rp. One can check that ρ(P ) = 1√
p and the incenter

of P is given by xρ = 1 1√
p (see, for instance, Henrion and Seeger (2010)). We have
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ρ(K)
(a)
= max

π∈Sd∩K
min
δ∈∂(K)

∥π − δ∥

(b)
= max

∥Gx∥=1,x∈P
min

Gy∈∂(K)
∥Gx−Gy∥

(c)
= max

∥Gx∥=1,x∈P
min
y∈∂(P )

∥Gx−Gy∥

= max
∥Gx∥=1,x∈P

min
y∈∂(P )

∥G(x− y)∥

= max
∥Gx∥=1,x∈P

min
y∈∂(P )

√
(x− y)′G′G(x− y)

≥ max
∥Gx∥=1,x∈P

min
y∈∂(P )

∥x− y∥
√
λmin(G′G)

(a) follows from the definition of inradius, (b) follows from the fact that π ∈ K ⇐⇒ π = Gx for some

x ∈ P since K is defined by the nonnegative linear combination of the columns of G, and by the fact

that G is full rank by assumption, so y = G−1δ is well defined. (c) holds since G is linear and establishes

a bijection between the generators of P and K. The inequality follows from the fact that G′G is positive

definite (which follows from G being full column-rank).

Moreover, since G has full column-rank, we have that Gx = 0 if and only if x = 0, implying that

x = 1
∥G1∥1 has only positive components and is well defined since ∥G1∥ ≠ 0. Thus, x = 1

∥G1∥1 is feasible

for the maximization problem presented above and we have

ρ(K)
(a)

≥
√
λmin(G′G) min

y∈∂(P )

∥∥∥∥ 1

∥G1∥
1− y

∥∥∥∥
=

√
p

∥G1∥
√
λmin(G′G) min

y∈∂(P )

∥∥∥∥ 1
√
p
1− y∥G1∥√

p

∥∥∥∥
(b)
=

√
p

∥G1∥
√
λmin(G′G) min

y∈∂(P )

∥∥∥∥ 1
√
p
1− y

∥∥∥∥
(c)

≥
√
p

∥G1∥
√
λmin(G′G)

1
√
p

=
1

∥G1∥
√
λmin(G′G),

where (a) follows from the fact that 1
∥G1∥ is feasible for the maximization problem, (b) follows from the

fact that we can always scale by a positive constant our choice for y in the minimization problem, and

(c) follows from the fact that the minimization problem over y is lower bounded by the definition of the

inradius of the nonnegative orthant.

App-26



In addition, we have ∥G1∥2 = 1′G′G1 ≤ ∥1∥2λmax(G′G) = pλmax(G
′G). In turn, we have

ρ(K) ≥ 1
√
p

√
λmin(G′G)

λmax(G′G)
.

Lemma B-3 (Condition number of Gram-Matrices). Let p ≥ 2 and let G be a full-column rank matrix

with unit norm columns denoted by gi, i = 1, · · · , p. Let Πg−i(·) denote the projection operator on the

subspace generated by {g1, . . . , gp} \ {gi}. Let

φ = min{∥gi −Πg−i(gi)∥ : i = 2, ..., p}. (B-11)

Then
λmax(G

′G)

λmin(G′G)
≤
(
p

φ

)2

.

Proof of Lemma B-3. We start from an upper bound on the ratio of largest to smallest eigenvalues

of G′G in terms of its trace and the trace of its inverse. Recall that G is full column-rank, which implies

that G′G is positive definite and we have that

λmax(G
′G)

λmin(G′G)
= λmax(G

′G)λmax((G
′G)−1) ≤ tr(G′G)tr((G′G)−1), (B-12)

where the last inequality follows from the fact that G′G and (G′G)−1 are positive definite and all eigen-

values are nonnegative.

Since the diagonal elements of G′G are equal to one, tr(G′G) = p. Next, we establish an upper bound

on tr((G′G)−1). In order to do that, we use a fact about the inverse of correlation matrices, commonly

denoted as precision matrices. Note that G′G is a correlation matrix because all the columns of G have

norm one and we can consider that each gi is an “observation” of some data in Rp. For the inverse of

correlation matrices, we have that the diagonal elements (aii) of (G
′G)−1 satisfy

R2
i = 1− 1

aii
, (B-13)

where R2
i is the coefficient of determination of the linear regression problem of the column gi onto the

other columns gj , j ̸= i (Raveh (1985)). Note that since the gi’s have unit norm, R2
i = ∥Πg−i(gi)∥2 ≤ 1

and it follows from Eq. (B-13) that

aii =
1

1− ∥Πg−i(gi)∥2
≤ 1

1−maxi=1,...,p ∥Πg−i(gi)∥2
.
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Note that ∥gi∥2 = ∥Πg−i(gi)∥2 + ∥gi −Πg−i(gi)∥2, and using the fact that ∥gi∥ = 1 and (B-11), we have

max
i=1,...,p

∥Πg−i(gi)∥2 ≤ 1− φ2.

In turn, we deduce that for i = 1, ...p

aii ≤
1

φ2
,

which implies that tr((G′G)−1) =
∑

i aii ≤ p/φ2. Hence, returning to Eq. (B-12), we have

λmax(G
′G)

λmin(G′G)
≤
(
p

φ

)2

,

which concludes the proof.

Lemma B-4 (Residuals). Let gi ∈ Rp, be a sequence of p unit norm vectors such that

∥gi −Πg1,··· ,gi−1(gi)∥2 ≥ η2, i = 2, · · · , p, (B-14)

where Πg1,··· ,gi−1(·) denote the projection operator on the subspace generated by g1, · · · , gi−1. Then the

residuals of the projection of an arbitrary vector on the subspace generated by all other vectors can be

lower bounded as follows

∥gi −Πg−i(gi)∥2 ≥ η2(p−i)(η2)1{i>1}, i = 1, ..., p, (B-15)

where Πg−i(·) denotes the projection operator on the subspace generated by {g1, . . . , gp} \ {gi}.

Proof of Lemma B-4. In order to understand how close ∥gi − Πg−i(gi)∥2 can be to zero, we need to

understand how much of the residual ∥gi −Πg1,...,gi−1(gi)∥2 can be reduced when adding the new vectors

gj ’s, for j = i + 1, .., p. The more the vectors gj ’s can explain, the closest ∥gi − Πg−i(gi)∥2 gets to zero.

We will leverage that the vectors gj ’s satisfy Eq. (B-14) to establish that there is a limit for how small

∥gi −Πg−i(gi)∥2 can be.

Two key properties that allow us to establish the result can be derived from the Frisch-Waugh-Lovell

Theorem (Lovell, 2008). Intuitively, the theorem states that when we add a new regressor to a linear

regression model, it suffices to consider only the component of the new regressor that is orthogonal to

the linear subspace of the regressors already present. We will use the following properties implied by the

theorem:

• Projection decomposition: for i = 1, ..., p and k = 0, ..., p− i,

Πg1,...,gi+k
(gi+k+1) = Πg1,...,gi−1,gi+1,...,gi+k

(gi+k+1) + Π(gi−Πg1,...,gi−1,gi+1,...,gi+k
(gi))(gi+k+1), (B-16)
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• R2 decomposition: for i = 1, ..., p and k = 0, ..., p− i,

∥Πg1,...,gi+k
(gi+k+1)∥2 = ∥Πg1,...,gi−1,gi+1,...,gi+k

(gi+k+1)∥2 + ∥Π(gi−Πg1,...,gi−1,gi+1,...,gi+k
(gi))(gi+k+1)∥2. (B-17)

The first property states that we can decompose the projection of gi+1 in two parts. First, we consider

the projection of gi+1 onto the subspace without gi. Second, we consider the projection of gi+1 on the

component of gi that is orthogonal to the subspace considered in the previous step, i.e., the projection of

gi+1 onto the vector gi −Πg1,...,gi−1(gi). For the second property, since gi −Πg1,...,gi−1(gi+1) is orthogonal

to the vectors g1, ..., gi−1, we have a situation in which the triangle equality holds and we can decompose

the coefficient of determination R2 in the contribution of each orthogonal set of regressors.

Note that when i = p, the result follows from the assumption (cf. Eq.(B-14)). Next, fix i in {1, ..., p−1}
and define the following sequence of residuals:

rki = gi −Πg1,...,gi−1,gi+1,...,gi+k
(gi), k = 0, ..., p− i. (B-18)

When i = 1 and k = 0 we will define by convention r01 = g1.

We will show that the sequence of residuals satisfies ∥rk+1
i ∥2 ≥ ∥rki ∥2η2. This recursive relationship

allows us to write

∥rk+1
i ∥2 ≥ ∥r0i ∥2η2(k+1),

Moreover, ∥r0i ∥2 ≥ η2 for i > 1 (cf. Eq. (B-14)), and ∥r01∥2 = ∥g1∥2 = 1, which implies that for

k = 0, ..., p− i,

∥rki ∥ ≥

η2k, i = 1

η2(k+1), 2 ≤ i ≤ p− 1,

Taking k = p− i leads to (B-15). Next, we establish that ∥rk+1
i ∥2 ≥ ∥r0i ∥2η2(k+1) holds.

We define the following vectors

νki = gi+k −Πg1,...,gi−1,gi+1,...,gi+k−1
(gi+k), k = 0, ..., p− i.

Note that Eq. (B-17) implies that νki is the vector that effectively contributes to reduce the residual

rk−1
i when gi+k is used to explain gi and {g1, ..., gi+k−1} \ {gi} were already considered. Eq. (B-17) gives

us that

∥Πg1,...,gi−1,gi+1,...,gi+k+1
(gi)∥2 = ∥Πg1,...,gi−1,gi+1,...,gi+k

(gi)∥2 + ∥Πνk+1
i

(gi)∥2,
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and since gi has unit norm, by construction, we have

∥Πg1,...,gi−1,gi+1,...,gi+k+1
(gi)∥2 = 1− ∥rk+1

i ∥2

∥Πg1,...,gi−1,gi+1,...,gi+k
(gi)∥2 = 1− ∥rki ∥2,

and hence the following recursive relationship

∥rk+1
i ∥2 = ∥rki ∥2 − ∥Πνk+1

i
(gi)∥2. (B-19)

Next, we upper bound ∥Πνk+1
i

(gi)∥2. We have that

∥Πνk+1
i

(gi)∥2 =
(g′iν

k+1
i )2

∥νk+1
i ∥2

(a)
=

(
(Πg1,...,gi−1,gi+1,...,gi+k

(gi) + rki )
′νk+1
i

)2
∥νk+1
i ∥2

(b)
=

(
rki

′
νk+1
i

)2
∥νk+1
i ∥2

, (B-20)

where (a) follows from the definition of rki (Eq. (B-18)), and (b) follows from the fact that νk+1
i and

Πg1,...,gi−1,gi+1,...,gi+k
(gi) are orthogonal since we removed the projection of gi+1 onto the subspace gener-

ated by {g1, ..., gi+k} \ {gi} when constructing νk+1
i . Next we develop an alternative representation for

νk+1
i . We have

νk+1
i = gi+k+1 −Πg1,...,gi−1,gi+1,...,gi+k

(gi+k+1)

(a)
= Πg1,...,gi+k

(gi+k+1) + r0i+k+1 −Πg1,...,gi−1,gi+1,...,gi+k
(gi+k+1)

(b)
= Πg1,...,gi−1,gi+1,...,gi+k

(gi+k+1) + Πβk
i
(gi+k+1) + r0i+k+1 −Πg1,...,gi−1,gi+1,...,gi+k

(gi+k+1)

= Πβk
i
(gi+k+1) + r0i+k+1,

where (a) follows from the definition of r0i+k+1 and in (b), we have used Eq. (B-16) and defined βki =

gi −Πg1,...,gi−1,gi+1,...,gi+k
(gi). Using this new representation for νk+1

i in Eq. (B-20) yields

(
rki

′
νk+1
i

)2
=
(
rki

′
(Πβk

i
(gi+k+1) + r0i+k+1)

)2
(a)
=
(
rki

′
Πβk

i
(gi+k+1)

)2
(b)

≤ ∥rki ∥2∥Πβk
i
(gi+k+1)

∥∥∥2, (B-21)

where (a) follows from the fact that r0i+k+1 is orthogonal to the subspace generated by g1, ..., gi+k, to which

rki belongs and (b) follows from the Cauchy-Schwarz inequality. In addition, we have that Πνki
(gi+k+1) and

r0i+k+1 are orthogonal since r0i+k+1 is by definition orthogonal to the subspace generated by g1, ..., gi+k,
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which Πβk
i
(gi+k+1) belongs to. Therefore, we have that

∥νk+1
i ∥2 = ∥Πβk

i
(gi+k+1) + r0i+k+1∥2 = ∥Πβk

i
(gi+k+1)∥2 + ∥r0i+k+1∥2,

which implies that
∥Πβk

i
(gi+k+1)∥2

∥νk+1
i ∥2

= 1−
∥r0i+k+1∥2

∥νk+1
i ∥2

≤ 1− ∥r0i+k+1∥2,

where the inequality follows from the fact that νk+1
i is a projection of a unit vector,so ∥νk+1

i ∥2 ≤ 1.

Returning to Eq. (B-19) and Eq. (B-20), we have established that

∥rk+1
i ∥2 ≥ ∥rki ∥2 − ∥rki ∥2(1− ∥r0i+k+1∥2) = ∥rki ∥2∥r0i+k+1∥2 ≥ ∥rki ∥2η2,

where the last inequality follows from assumption (cf. Eq. (B-14)). This completes the proof.

C Additional Figures

We provide here additional analysis for the simulation results. For the cases depicted in Figures 6a, 6b, 7a

and 7b, we depict the results in log-log scale in Figures 10a, 10b, 11a and 11b, respectively. A dependence

of the form Tα would lead to a linear relationship on this graph. Each graph depicts for reference the

curve T 1/2. We can see that our algorithms appear to achieve logarithmic regret when the time horizon is

sufficiently long. It is worth noticing that the transition regime (before achieving the logarithmic regret

rate) can be affected by the dimension of the problem, which is also observed for the competing methods.

Interestingly, for both OGD and EWU, we observe over the numerics that these seem to achieve regret

rates better than O(
√
T ) for the stochastic case. Whereas the theoretical guarantees for these methods in

the adversarial case are currently of order O(
√
T ), the numerics highlight an interesting theme for future

research: delineating whether or not OGD and EWU can achieve better regret bounds in non-adversarial

environments.
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(a) d = 10 and T = 1000.
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(b) d = 25 and T = 5000

Figure 10: Average cumulative regret over 50 simulations for EWU, OGD and the EllipsoidalCones

algorithms for the pointed case in loglog scale.
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(a) d = 10 and T = 1000.
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(b) d = 25 and T = 5000.

Figure 11: Average cumulative regret over 50 simulations for OGD and the ProjectedCones algorithms
for the general case in loglog scale.
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